8 research outputs found

    Web‐based efficient dual attention networks to detect COVID‐19 from X‐ray images.

    Get PDF
    Rapid and accurate detection of COVID-19 is a crucial step to control the virus. For this purpose, the authors designed a web-based COVID-19 detector using efficient dual attention networks, called ‘EDANet’. The EDANet architecture is based on inverted residual structures to reduce the model complexity and dual attention mechanism with position and channel attention blocks to enhance the discriminant features from the different layers of the network. Although the EDANet has only 4.1 million parameters, the experimental results demonstrate that it achieves the state-of-the-art results on the COVIDx data set in terms of accuracy and sensitivity of 96 and 94%. The web application is available at the following link: https://covid19detector-cxr.herokuapp.com/

    Recognizing food places in egocentric photo-streams using multi-scale atrous convolutional networks and self-attention mechanism.

    Get PDF
    Wearable sensors (e.g., lifelogging cameras) represent very useful tools to monitor people's daily habits and lifestyle. Wearable cameras are able to continuously capture different moments of the day of their wearers, their environment, and interactions with objects, people, and places reflecting their personal lifestyle. The food places where people eat, drink, and buy food, such as restaurants, bars, and supermarkets, can directly affect their daily dietary intake and behavior. Consequently, developing an automated monitoring system based on analyzing a person's food habits from daily recorded egocentric photo-streams of the food places can provide valuable means for people to improve their eating habits. This can be done by generating a detailed report of the time spent in specific food places by classifying the captured food place images to different groups. In this paper, we propose a self-attention mechanism with multi-scale atrous convolutional networks to generate discriminative features from image streams to recognize a predetermined set of food place categories. We apply our model on an egocentric food place dataset called 'EgoFoodPlaces' that comprises of 43 392 images captured by 16 individuals using a lifelogging camera. The proposed model achieved an overall classification accuracy of 80% on the 'EgoFoodPlaces' dataset, respectively, outperforming the baseline methods, such as VGG16, ResNet50, and InceptionV3

    Food places classification in egocentric images using Siamese neural networks.

    Get PDF
    Wearable cameras have become more popular in recent years for capturing unscripted moments in the first-person, which help in analysis of the user's lifestyle. In this work, we aim to identify the daily food patterns of a person through recognition of places relating to food in person-focused images ("selfies"). This has the potential for a system that can assist with improvements to eating habits and prevention of diet-related conditions. In this paper, we use Siamese Neural Networks (SNN) to learn similarities between images with one-shot "food places" classification. We tested our proposed method with "MiniEgoFoodPlaces", using 15 food-related locations. The proposed SNN model with MobileNet achieved an overall classification accuracy of 76.74% and 77.53% on the validation and test sets of the "MiniEgoFoodPlaces" dataset, outperforming the base models such as ResNet50, InceptionV3 and InceptionResNetV2

    SLSNet: Skin lesion segmentation using a lightweight generativeadversarial network

    Get PDF
    The determination of precise skin lesion boundaries in dermoscopic images using automated methods faces many challenges, most importantly, the presence of hair, inconspicuous lesion edges and low contrast in dermoscopic images, and variability in the color, texture and shapes of skin lesions. Existing deep learning-based skin lesion segmentation algorithms are expensive in terms of computational time and memory. Consequently, running such segmentation algorithms requires a powerful GPU and high bandwidth memory, which are not available in dermoscopy devices. Thus, this article aims to achieve precise skin lesion segmentation with minimum resources: a lightweight, efficient generative adversarial network (GAN) model called SLSNet, which combines 1-D kernel factorized networks, position and channel attention, and multiscale aggregation mechanisms with a GAN model. The 1-D kernel factorized network reduces the computational cost of 2D filtering. The position and channel attention modules enhance the discriminative ability between the lesion and non-lesion feature representations in spatial and channel dimensions, respectively. A multiscale block is also used to aggregate the coarse-to-fine features of input skin images and reduce the effect of the artifacts. SLSNet is evaluated on two publicly available datasets: ISBI 2017 and the ISIC 2018. Although SLSNet has only 2.35 million parameters, the experimental results demonstrate that it achieves segmentation results on a par with the state-of-the-art skin lesion segmentation methods with an accuracy of 97.61%, and Dice and Jaccard similarity coefficients of 90.63% and 81.98%, respectively. SLSNet can run at more than 110 frames per second (FPS) in a single GTX1080Ti GPU, which is faster than well-known deep learning-based image segmentation models, such as FCN. Therefore, SLSNet can be used for practical dermoscopic applications

    AWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation

    No full text
    Lung cancer is a deadly cancer that causes millions of deaths every year around the world. Accurate lung nodule detection and segmentation in computed tomography (CT) images is a vital step for diagnosing lung cancer early. Most existing systems face several challenges, such as the heterogeneity in CT images and variation in nodule size, shape, and location, which limit their accuracy. In an attempt to handle these challenges, this article proposes a fully automated deep learning framework that consists of lung nodule detection and segmentation models. Our proposed system comprises two cascaded stages: (1) nodule detection based on fine-tuned Faster R-CNN to localize the nodules in CT images, and (2) nodule segmentation based on the U-Net architecture with two effective blocks, namely position attention-aware weight excitation (PAWE) and channel attention-aware weight excitation (CAWE), to enhance the ability to discriminate between nodule and non-nodule feature representations. The experimental results demonstrate that the proposed system yields a Dice score of 89.79% and 90.35%, and an intersection over union (IoU) of 82.34% and 83.21% on the publicly available LUNA16 and LIDC-IDRI datasets, respectively

    AWEU-Net: an attention-aware weight excitation U-Net for lung nodule segmentation.

    Get PDF
    Lung cancer is a deadly cancer that causes millions of deaths every year around the world. Accurate lung nodule detection and segmentation in computed tomography (CT) images is a vital step for diagnosing lung cancer early. Most existing systems face several challenges, such as the heterogeneity in CT images and variation in nodule size, shape, and location, which limit their accuracy. In an attempt to handle these challenges, this article proposes a fully automated deep learning framework that consists of lung nodule detection and segmentation models. Our proposed system comprises two cascaded stages: (1) nodule detection based on fine-tuned Faster R-CNN to localize the nodules in CT images, and (2) nodule segmentation based on the U-Net architecture with two effective blocks, namely position attention-aware weight excitation (PAWE) and channel attention-aware weight excitation (CAWE), to enhance the ability to discriminate between nodule and non-nodule feature representations. The experimental results demonstrate that the proposed system yields a Dice score of 89.79% and 90.35%, and an intersection over union (IoU) of 82.34% and 83.21% on the publicly available LUNA16 and LIDC-IDRI datasets, respectively

    MACNet: Multi-scale Atrous Convolution Networks for Food Places Classification in Egocentric Photo-Streams

    No full text
    First-person (wearable) camera continually captures unscripted interactions of the camera user with objects, people, and scenes reflecting his personal and relational tendencies. One of the preferences of people is their interaction with food events. The regulation of food intake and its duration has a great importance to protect against diseases. Consequently, this work aims to develop a smart model that is able to determine the recurrences of a person on food places during a day. This model is based on a deep end-to-end model for automatic food places recognition by analyzing egocentric photo-streams. In this paper, we apply multi-scale Atrous convolution networks to extract the key features related to food places of the input images. The proposed model is evaluated on an in-house private dataset called “EgoFoodPlaces”. Experimental results shows promising results of food places classification in egocentric photo-streams

    SLSDeep: Skin Lesion Segmentation Based on Dilated Residual and Pyramid Pooling Networks

    No full text
    Skin lesion segmentation (SLS) in dermoscopic images is a crucial task for automated diagnosis of melanoma. In this paper, we present a robust deep learning SLS model represented as an encoder-decoder network. The encoder network is constructed by dilated residual layers, in turn, a pyramid pooling network followed by three convolution layers is used for the decoder. Unlike the traditional methods employing a cross-entropy loss, we formulated a new loss function by combining both Negative Log Likelihood (NLL) and End Point Error (EPE) to accurately segment the boundaries of melanoma regions. The robustness of the proposed model was evaluated on two public databases: ISBI 2016 and 2017 for skin lesion analysis towards melanoma detection challenge. The proposed model outperforms the state-of-the-art methods in terms of the segmentation accuracy. Moreover, it is capable of segmenting about 100 images of a 384×384 size per second on a recent GPU
    corecore